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Cyber-Physical Production Systems (CPPS) often use wireless sensor networks (WSNs) for monitoring purposes. How-
ever, data from WSNs may be inaccurate and unreliable due to power exhaustion, noise and other issues. In order to
achieve a reliable and accurate data acquisition while ensuring low energy consumption and long lifetime of WSNs, data
cleansing algorithms for energy-saving are proposed in this research. The cleansing algorithms are computationally light-
weight in local sensors and energy-efficient due to low energy consumption in communications. Dynamic voltage scaling
and dynamic power management are adopted for reducing energy consumption, without compromising the performance
at system level. A low-power protocol for sink node communication is proposed at network level. A health monitoring
system for a Cyber-Physical Machine Tool (a typical example of CPPS) is designed. Experiment results show that the
proposed energy-saving data cleansing algorithm yields high-performance and effective monitoring.

Keywords: data cleansing; energy-saving; Cyber-Physical Production Systems (CPPS); Cyber-Physical Machine Tools
(CPMT); Cyber-Physical Systems

1. Introduction

Cyber-Physical Systems (CPS) are enabling technologies which bring the virtual and physical worlds together to create
a truly networked world where intelligent objects can communicate and interact with each other (Kumar et al. 2016;
Lee, Bagheri, and Kao 2015; Liao et al. 2017; Nayak et al. 2016; Wang, Törngren, and Onori 2015). Cyber-Physical
Production Systems (CPPS) relying on the advanced CPS make full use of information and communication technologies
in a production environment (Monostori 2014; Xu 2012), and this new type of production system is also called Cyber-
Physical Production Network which has the ability to control the networked production system easily (Mladineo, Veza,
and Gjeldum 2017). As a typical example of CPPS, Cyber-Physical Machine Tools (CPMT) have been proposed as the
next generation of machine tools which deeply integrate machine tool, machining processes, computation and network-
ing (Liu and Xu 2017; Xu 2017). A CPMT owns a Cyber Twin (the digital abstraction of machine tool) that is equipped
with computational and networking capabilities, allowing real-time feedback loops to be established in which machining
processes can affect computations and vice versa (Liu et al. 2017). At component level, once the sensory data from crit-
ical components (e.g. spindle and slide ways) is gathered, the Cyber Twin of each component analyses the data in order
to achieve autonomous functions such as self-awareness and self-prediction (Bagheri et al. 2015). In system integration
and control, transfers of motion, energy and data among different modules of machine tools are carried out (Gadalla and
Xue 2017). Furthermore, similarities between the current performance and historical information of a machine tool can
be mined to predict its future behaviour. Thus, CPMT becomes intelligent, resilient and self-adaptable (Lee, Bagheri,
and Kao 2015; Wang 2013).

Real-time status monitoring is a key function for CPMT and it requires monitoring of not only the operating status
of the servomotor, but also other key components such as spindles, screws and rails. With the rapid development of
wireless transmission technology, Ad Hoc network technology and low-power sensing technology, the new wireless sen-
sor network (WSN) as the core of CPS (Gamba, Tramarin, and Willig 2010) can achieve an intelligent monitoring sys-
tem for machine tools. The raw data collected by WSNs however may become inaccurate and unreliable as sensors’
battery power drops (Huang, Thareja, and Shin 2006; More and Raisinghani 2017). In addition, an unstable network
also introduces noise or outliers. Such noise can be categorised into four types: incomplete, inaccurate, duplicated, and
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missing data (Zhong et al. 2013; Zhong et al. 2014). Therefore, sensor data gathering requires suitable mechanisms such
as data cleansing algorithms to ensure the reliability and accuracy. Another critical issue lies in energy consumption. In
order to maximise the lifecycle of a sensor, the circuits, architecture, algorithms and network protocols need to be
designed in energy-efficient manners. At system-level, dynamic voltage scaling (DVS) and dynamic power management
(DPM) may be deployed to reduce energy consumption by setting the sensors into a different energy-saving mode or
even shutting down depending on the level of urgency of the event (Pughat and Sharma 2015). Consequently, it is nec-
essary to develop an algorithm that provides reliable data, tracks the changes of a machine status, infers additional
knowledge from historical information, and passes the outcomes to the next level. An approach within the framework of
Design Science Research Methodology and prototyping has been proposed to address the challenge of modelling, simu-
lation and data analytics in manufacturing (Jain, Shao, and Shin 2017). Zhong, Wang, and Xu (2017) proposed a multi-
objective hybrid artificial bee colony (MOHABC) algorithm for service composition and optimal selection in cloud
manufacturing. This paper considers both the Quality of Service and the energy consumption from the perspectives of
economy and environment. In fact, Small and Medium Enterprises do not exploit all the resources for implementing
Industry 4.0 and there is still a lack of real applications in the field of production planning (Moeuf et al. 2017).

In this paper, we developed a low-power and reliable Health Monitoring System for Cyber-Physical Machine Tools
(HMS-CPMT), to address two research questions: (1) How to ensure a long lifetime of a sensor while maintaining a
low energy consumption? and (2) How to provide reliable real-time manufacturing data for local analysis as well as for
the cloud server? Firstly, a data cleansing algorithm for energy-saving (DCAES) was proposed to guarantee lightweight
computing and energy efficiency in local nodes. Secondly, an energy-saving scheduling algorithm for sensors (ESSAS)
was developed based on DVS and DPM for reducing power consumption without significant performance degradation
at the system level. Furthermore, a low-power protocol for sink node communication was proposed at network level.

The rest of this paper is organised as follows: Section 2 reviews the related work. The model overview and design
are in Section 3, which describes the framework of the HMS–CPMT as well as the task model, energy model and data
cleansing model. Section 4 presents the realisation of the proposed energy-saving data cleansing algorithm in the CPMT.
Performance evaluations of the proposed algorithm are conducted in Section 5. Section 6 concludes this paper with key
findings and future work.

2. Related work

2.1 Data cleansing

A key characteristic of CPMT is the ability to collect accurate and reliable data from machine tools and their critical
components. The data might be directly measured by sensors or obtained from a controller. On one hand, there are vari-
ous types of data, a seamless and tether-free method to manage data acquisition procedure and transferring data to local
and cloud server is necessary with specific protocols such as MTconnect (Vijayaraghavan et al. 2008) and OPC-UA
(Hannelius, Salmenpera, and Kuikka 2008). On the other hand, an effective data cleansing algorithm for processing raw
data is required (Lee, Bagheri, and Kao 2015).

Owing to the natural properties of the sensors and the uncertainties of the environmental conditions, data loss usually
happens during the data acquisition processes; the ratio of the acquired data compared to the total generated data is
around 60–70%. (Wang et al. 2014). In order to obtain sufficient data, sensors need to be sufficiently deployed to sample
data periodically. However, duplicated samplings are usually generated when the sensors are intensively distributed (Lu
et al. 2017). Sending duplicated data to a cloud server results in time delays as well as a significant waste of network
resources such as energy (Bashir et al. 2011). It is, therefore, both wise and necessary to eliminate the redundant and
unreliable data at the sensor end by a cleansing approach. The objective of cleansing data method is to reduce energy
consumption and time delays, i.e. less redundant data, less power consumption and less time delay in the network.

There are two types of time and space-related sensor data cleansing technologies: centralised cleansing and
in-network cleansing. For centralised data cleansing, Jeffery proposed a method with temporal and spatial correlation of
the perceived data to recover the missing data and remove the isolated points (Jeffery et al. 2006). Zhuang et al. (2007)
proposed a weighted moving average algorithm to reduce the energy consumption of the local node samples and to
increase the response of the perceived data by using the combination of the local node and the neighbour node test.
However, centralised cleansing methods cannot meet the real-time requirements because of the large amount of percep-
tual data being sent to the sink nodes for centralised processing (Lei et al. 2016). In addition, the energy consumption
due to the transmission of large amounts of data also makes the centralised cleaning methods difficult to implement. Xu
et al. (2013) proposed a hierarchical framework for abnormal detection in WSNs, where data is pre-processed in sensors
before being sent to the cloud server. However, the correlations among different sensor nodes are not discussed to
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recognise the event outliers. In order to address this issue, neighbourhood voting method was used for fault or event
outlier detection (Yim and Choi 2010). Unfortunately, the accuracy of these methods was constrained by the number of
neighbour nodes. Branch et al. (2013) provided an in-network outlier detection algorithm which was derived from
neighbourhood voting algorithm without considering the power consumption.

2.2 Energy saving

Energy efficiency has been a crucial problem when applying sensors in CPS (Zhang and Wang 2006). Wireless devices
have a stringent requirement of power consumption. Sensors in most of the existing networks have limited battery. It is
crucial to manage the power consumption at the design and planning stage (López et al. 2009). Majority of studies on
energy-efficient routing only focuses on a portion of, rather than the overall, system (Heo, Hong, and Cho 2009).

Energy optimisation has been widely studied in CPS. High-performance applications usually consume more energy
that can lead to reduction of the battery lifetime and cripple the whole network (Rountree et al. 2009). In fact, the peak
computing is not always required as the processor’s operating frequency can be dynamically scaled based on the work-
load. The goal of DVS is to manage the power supply and operating frequency. And DPM is another effective technol-
ogy for reducing system power consumption without significant performance degradation. The basic idea is to turn off
devices or components when they are not needed (Deng et al. 2017). Then, energy-saving algorithms put the
system into a sleep mode when slack time is long enough. In fact, the sleep mode transition and wake-up also have the
switching energy overhead and also take a certain period of time.

Literature has studied the main techniques of saving-energy (Jiang et al. 2007; Khan, Qureshi, and Iqbal 2015).
DVS has been discussed in Sausen et al. (2008) and interplay of both DPM and DVS has been considered. Also, some
scheduling algorithms have been discussed (Dgharkut and Lohiya 2014; Kulau, Büsching, and Wolf 2013). An algo-
rithm has been proposed to reduce the power consumption in the processing unit through ‘undervaluing’, where the
powering electric circuits were lower than the specified voltage levels (Wu and Yang 2005). However, this technique
depends on the circuit state and has operational difficulties. This threshold is unpredictable because it is not versatile for
other platforms. Besides, the risk of instantaneous errors grows with lower clock rates. Unlike the aforementioned meth-
ods, this paper proposes a novel lightweight in-network approach for sensor data cleansing with the correlations of time
and space.

3. A health monitoring system for Cyber-Physical Machine Tools

3.1 System framework

The framework of the HMS–CPMT is presented in Figure 1 which comprises three parts. The bottom part is the key
components of a machine tool. The middle part is the key body where sensor network, local monitoring system, acquisi-
tion nodes and sink nodes are deployed. It sets up a wireless network for data collection. In the cloud services part, a
remote health monitoring system is developed to supervise the system by making full use of the captured big data from
machine tools.

HMS–CPMT is based on wireless sensors and includes four layers (Figure 2): physical layer, cyber layer, computing
platforms layer and application layer. In the WSN layer, the acquisition nodes are attached to the spindle and the ball
screw to obtain vibration and temperature data (Zhong, Wang, and Xu 2017). The acquisition nodes cleanse the received
data and remove the noisy information before sending it to the sink node (Zhong et al. 2015). MTConnect is an interna-
tional standard based on an open protocol for data integration, which strives to strengthen the data acquisition capabili-
ties of devices and towards developing a plug-and-play component to reduce the cost (Vijayaraghavan et al. 2008).
Figure 2 shows a schematic diagram of HMS–CPMT with MTConnect integration. The data are encapsulated into
MTConnect format and sent to local CNC system by the sink nodes. HMS–CPMT is equipped with a wired connected
router for the link between sinks and local CNC system in order to ensure the security, reliability and real-time perfor-
mance of data communications in the manufacturing environment. The sink nodes can also send vibration and tempera-
ture information to remote a health diagnosis system via the GPRS module to facilitate remote maintenance. Finally,
HMS–CPMT is designed to use data mining algorithms in the cloud services layer.

• Physical layer. The basic physical structure system consists of ‘physical elements’. The key mechanical parts and
hydraulic systems that affect the operation of the machine are monitored, such as the wear or damage of the bear-
ings, gears, screws and the automatic tool changer.

• Cyber layer. The cyber level acts as a key information hub where data is passed from each connected machine to
the machine’s network. With massive data gathered, specific analytics are used to extract additional information to
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observe over the status of individual machines. The network can compose the ‘cyber’ part of CPS and the sensors
are connected via a communication network, e.g. Bluetooth or ZigBee.

• Computing platforms layer. Aiming to examine a typical fault and friction of the machine tool system, the health
diagnosis of the key components such as spindle, gear box and cutting tool is carried out by the combination of
performance parameter, trend analysis and unit detection. The in-network DCAES is given for data collection, data
processing and troubleshooting at this level.

• Application layer. The performance parameters, fault types and safety prediction of components are used for
machine tool monitoring. The parameter database, dynamic database, historical database and knowledge base are
used to realise an effective management of health information. Each machine tool has its own health records,
which are updated using a data-driven algorithm. The health conditions of the machine tool are feedback to the
local CNC system for real-time adaptive control and remote health diagnosis (Lee, Kao, and Yang 2014).

Sink Sink

Sensor 

Sensor 

Sensor 
Sensor 

Sensor 

Sensor 

Feedback control

Critical components

Wireless sensor network

Cloud services

Local health monitoring 
system

Remote health 
monitoring system

GPRS

Cloud server

Applications

GPRS

Product providers

Analytics 

Router

Figure 1. Framework of health monitoring system for CPMT.

Application layerComputing 
platforms layer

Local fault 
detection system

Cloud fault 
detection system

Physical layer

Troubleshooting

Data processing

Data collectionController

Servo motor

Machine tool

Cyber layer

Networks

MTConnect

Networks

MTConnect

Analytics

Information 
hub Networks

MTConnect

Figure 2. Model of health monitoring system for CPMT.
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3.2 Task model

Based on the characteristics of data processing, each sensor node is assigned with three categories of tasks, i.e. sensing
tasks, processing tasks and transmission tasks. These tasks are carried out periodically. Considering a period task set,
J = {J1, J2, …, Jn}, the worst-case total utilisation of task set is Up. Ji can be represented by a three-tuple (ACi, Ci, Pi).
ACi is the actual execution time of Ji. Ci is the worst-case execution time at the maximum processor speed. Pi is the
minimum period between the two consecutive executions of instances. Di is the relative deadline within which the sys-
tem must guarantee the task response. We assume that Di is equal to Pi for all tasks. The execution speed is assumed to
have a linear relationship with the task execution time. If a task Ji scheduled on a different node, a communication
between these nodes is required. In such a case, Ji cannot be executed until the communication is finished and the result
of Ji is received. However, if all tasks are assigned on a same node, the result of communication delay is considered to
be zero and Ji can be executed after Jm is completed.

3.3 Energy model

The energy consumption of a sensor for transmitting and receiving l-bit data over a distance d that is less than a thresh-
old do, which are defined as Etr l; dð Þ and Ere lð Þ, respectively (Tian, Ekici, and Ozguner 2005):

Etr l; dð Þ ¼ Eel � l þ eamp � l � d2 (1)

Ere lð Þ ¼ Eel � l (2)

where d means the transmission distance between sensors, Eel and ɛamp are both hardware parameters (Basu, Ke, and
Little 2003; Giannecchini, Caccamo, and Shih 2004). When a sensor executing N clock cycles at CPU frequency f and
supply voltage Vd , the energy consumption Ecom is given as:

Ecom Vd ; fð Þ ¼ N � C � V 2
d þ Vd � ðIo � e

Vd
n�VT Þ � N

f

� �
(3)

f ffi K � ðVd � cÞ (4)

where VT is the thermal voltage and C, Io, K and c are corresponding dependent parameters (Basu, Ke, and Little
2003).

The mode basically describes the power consumption at different levels. Each node can be in an active, idle or sleep
mode as shown in Figure 3, which includes a specific combination of different component powers (Sinha and Chan-
drakasan 2001). Each node has two active modes: receive and transmit. These modes are activated directly using Sensor

Idle mode

Initialization 
mode Sleep mode

Active mode
(receive data)

Active mode
(Send data)

Figure 3. The sensors are switched in different mode.
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Receive Mode (SRX) and Sensor Transmit Mode (STX) commands defined by the device provider, or automatically by
Sensor Wake-On-Radio (WOR). When enabling STX, the modulator will start transmitting; when enabling SRX, the
modulator will start receiving. SWOR functionality enables the radio to periodically wake up from sleep mode and lis-
ten for incoming packets with minimal CPU interaction. Table 1 lists the component power including three different
modes, i.e. active mode, idle mode and sleep mode. Sleep mode has two options (normal and deep), which are selected
based on the actual operating conditions of the sensors. A deeper sleep mode is characterised by increased latency and
reduced power consumption. In general, the deeper sleep mode, the less power consumed and the longer wake-up time.

3.4 Data cleansing model

In a WSN, the current value of a perceived node compared with the previous period has a larger fluctuation, which
introduces large uncertainties which require more information from the neighbouring nodes. Elastic space is the adjacent
space that changes with the fluctuation of the perceived data under ensuring that each node has high spatial correlation
(Fang, Dobson, and Hudges 2013). The elastic space model is defined as follows:

SP ¼ R � ea�D2

(5)

where SP is the size of the neighbouring space, indicating the highest correlation of neighbouring nodes. R is the global
correlation of the current neighbourhood space (0 < R ≤ 1). e is a mathematical constant. Δ indicates the amount of
change in the measured value, which is the difference between the current measured value and the previous period
value. α indicates the fluctuation adjustment parameter (α > 0). The value of α depends on the reliability of the data to
be obtained. To ensure the reliability of the data, set c as the lower bound of the elastic space. To prevent the elastic
space from being too large, set d as the upper bound of the elastic space. When the elastic space exceeds the upper
bound d, the data from the sensor is identified as unreliable data by the local node.

4. Realisation of data cleansing algorithm for energy-saving

There are two phases in the DCAES. The first is the in-network data cleansing algorithm for energy-saving (IDCAES),
which can complete the data cleansing work, taking into account the proximity of the neighbour correlation. The second
is the ESSAS, which is used to schedule periodic sampling task with lower power consumption.

4.1 Data exchange standard: MTConnect

Modern manufacturing systems usually comprise manufacturing devices from different providers who use their propri-
etary communication protocols (Koren, Wang, and Gu 2017). Hence, the data in a manufacturing system usually varies
from machine to machine. That causes difficulties in data exchange, integration and management in the CPMT. MTCon-
nect, which is a lightweight, open and extensible protocol designed for the exchange of data between shop-floor equip-
ment and software applications, is a feasible solution for addressing the difficulties. MTConnect allows for disparate
entities in a manufacturing system along with their associated devices to share data (Vijayaraghavan et al. 2008). It is
built upon the most prevalent standards in the manufacturing and software industry including eXtensible Markup Lan-
guage (XML) and Hypertext Transport Protocol (HTTP).

MTConnect provides a detailed data model for field-level manufacturing equipment. It defines the vocabulary and
semantics of manufacturing data, enabling a unified definition such as name, units, values and context. MTConnect stan-
dard also provides a machine-readable XML schema which defines a hierarchical information model for a machine tool.
The hierarchical structure enables the data related to the same component to be grouped together and bound to that com-
ponent. For example, the temperature and vibration data of a spindle acquired from different sensors can be grouped

Table 1. The sensors are switched in different mode.

Serial number Mode Sensor, analogue–digital converter Radio

S0 Active On Tx, Rx

S1 Idle On Rx

S2 Sleep On/Off Rx

Note: Tx = transmit, Rx = receive.

6 C. Deng et al.
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together so that all relevant data items can be retrieved by a single command instead of inquiring each data item sepa-
rately. Figure 4 shows an example of using MTConnect information model for a spindle motor of a machine tool.

4.2 In-network data cleansing algorithm for energy-saving

We assume sensor m can be denoted by (x, y, z), which represents the location of sensor in space. N(m) is the neighbour
set of sensor m. In the data cleansing algorithm, the closer the two nodes are, the greater correlation between them will
be. The algorithm uses Gaussian Radial Basis Function (GRBF) to measure the correlation according to Euclidean dis-
tance between the two nodes (Wang, Wang, and Ma 2007). The following definitions are proposed.

Definition 1: dis(m, n) is the Euclidean distance between the node m and n. The value of dis(m, n) is used to find out
the outlier.

disðm; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm � xnð Þ2þðym � ynÞ2 þ zm � znð Þ2

q
(6)

Definition 2: GRBF is used to measure the spatial correlation between nodes, r m; n; bð Þ is denoted the spatial
correlation.

r m; n; bð Þ ¼ e
�disðm;nÞ2

2b2 (7)

where e is a constant and β is the width parameter of the function. By adjusting the parameter b, the far distance and
low correlation of data can be eliminated in the data cleansing process. In order to balance the spatial correlation of the
entire neighbourhood space, the method can calculate the correlation average between each node and the local master m
as follows:

R mð Þ ¼
X

n2N mð Þ
r m; n; bð Þ

0
@

1
A= NðmÞj j (8)

where R mð Þ is the global correlation of the neighbourhood space. N(m) is the neighbour sensor set of m, NðmÞj j repre-
sents the number of neighbours; n ∈ N(m), which is the neighbouring sensor of m.

Set the lower bound c and the upper bound δ of the elastic space, the acquisition sensor data removal noise and out-
liers recognition method is as follows:

(1) Store the acquisition data with MTConnect format, from which to obtain the time of the sensor acquisition data
and value. When the current data are a large fluctuation compared with the previous ones, neighbouring sensors
eliminate the uncertainty of the measured values.

Figure 4. A paradigm hierarchy for HMS–CPMT with MTConnect.
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(2) If the neighbour space SP is larger than the sensor’s measured value, the weighted average of the neighbourhood
is used to remove the noise:

�x m; tð Þ ¼ x m; tð Þ þ
X

n2N mð Þ
x n; tð Þ � r n;m; bð Þ

0
@

1
A= NðmÞj j (9)

x(n, t) is the original measured value of sensor n at time t. �xðm; tÞ is the correction value of sensor m at time t.
r(n, m, β) can be calculated by Equation (7), which is the weight of the measured value of the node n.
(3) If the neighbourhood space SP is less than or equal to d, the measured value and the nearest neighbour measure-

ment of the weighted average to remove the noise following:

�x m; tð Þ ¼ x m; tð Þ þP
n2NðmÞ x n; tð Þ � rðn;m; bÞ
NðmÞj j þ 1

(10)

Based on the definitions, the proposed DCAES–IDCAES is as follows:

In the above algorithm, lines 1–6 calculate the size of the neighbouring space. Lines 7–17 determine whether the
adjacent space beyond the elastic space. Lines 18–22 find data in outliers. Line 25 sends the cleansed data to the sink
node. Since the master sensor needs to communicate with other neighbouring sensors, the time performance of the algo-
rithm mainly depends on the communication delay.

Due to the discrete feature of task mapping and scheduling, a schedule may yield some slack time before the dead-
line. The unbalanced workload of sensors and the communication scheduling also yields CPU slack time. In the DVS
phase, the CPU slack time can be exploited by scaling CPU frequency to reduce energy consumption. When the slack
is long enough, DPM can be used to decide CPU into different sleep mode.

1. Select a master sensor mr from acquisition sensors
2. Calculate dis ðm; nÞ and r m; n; bð Þ; // find the optimal neighbour space.
3. If sensors are not selected, then
4. Sensors are going into sleep mode until the wake-up;
5. If mr obtained a significant deviation from the previous data, then
6. The data is obtained from the neighbour sensor and the data is manipulated;
7. Input the elastic space lower γ and the upper δ, current measured value and previous period correction value;
8. For (node i = 0; k < N(m); k++)
9. {
10. Calculate mr of neighbourhood spatial correlation Ri, ΔI, and SPi;
11. If SPi > δ
12. Ni = δ;
13. Else If SPi < γ
14. Ni = γ;
15. Else
16. Ni = SPi;
17. }
18. Obtain the data of n neighbouring sensors with the highest spatial correlation SPmax;
19. IF SPmax > δ
20. Calculate the weighted average of neighbour sensors;
21. Else
22. Calculate local nodes and neighbour sensors to measure the weighted average;
23. Update the energy consumption of mr by Equation (3);
24. Put other sensors into sleep mode waiting to wake-up;
25. Send data to the sink sensor;

8 C. Deng et al.
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DCAES–ESSAS

Firstly, the processor initialises the minimum speed (line 1). All tasks are sorted by descending order of the deadline
and added to the deadline queue DQ (lines 2–4). Secondly, when a task is completed early, the slack time is recycled
and the task is removed from the Run Queue (RQ). The processor speed is scaled down, which is used for the rest task
(lines 6–12). Finally, DPM technology can be used to determine sensors into the general sleep mode or deeper sleep
mode depending the length of the slack time (lines 13–26), which can achieve the collaborative optimisation scheduling
with DVS and DPM. Time complexity of DCAES–ESSAS mainly comes from sorting tasks and recycling slack time,
which is OðnÞ.

4.3 Low-power protocol for sink node communication

The sink sends the collected data in two ways. The first is the local CNC system with real-time feedback control
machine tools by a wire router. The second is the cloud services for remote health diagnosis by GPRS. Machine tools
network achieves ad hoc protocol, which is a three-way handshake communication between the sink and the acquisition
node (Wheeler 2007). We design an array which can collect network nodes to manage the network. As shown in
Figure 5, the sink receives the command confirmation packet from the destination. When a node cannot work properly
due to circuit failure or battery depletion, the sink needs to remove these ‘dead’ nodes from the ad hoc network.

In the implementation of network protocol, the Tick_Check function is used to find an array element whose member
variable Max_Time is equal to Ticks and Active is 1 (networked state) in the node structure array. As these ‘dead’
nodes are removed from the ad hoc network by the sink, the Max_Time member variable of the array elements will be
overwritten. Every time the processors enter into a hardware timer interrupt, Tick_Check function will be executed once.
Since the trigger cycle of hardware timer interrupt is set to 10 ms, that means the sink nodes check whether there is a
network failure node every 10 ms.

4.4 An example

As an example, Table 2 shows some sample data. There are one master node 0 and three nodes to demonstrate
DCAES–IDCAES. �X (t1) is the previous period value at time t1 and X(t2) is the current measured value at t2. Δ is the

1. S = Smin, t is the current scheduling point.
2. For all event job i = 1 to all do
3. Sort task set with deadline task in DQ
4. End for
5. While true do {
6. If Jk is activated, then
7. Jk is scheduled and update remi(t);
8. If Jk is finished, then
9. Remove Jk from RQ;
10. Calculates the available slack time ST for the task Jk;
11. If Rq ≠ ∅, then
12. Si ¼ w tð Þi=ðST þ UiÞ
13. If no task is activated and Rq ¼ U, then
14. {
15. Calculates the slack_time;
16. System into idle mode;
17. If A task is active(external), then
18. System comes back to active mode;
19. If slack_time > t0, then
20. System into sleep-state;
21. If no task is active in the sleep-state, then
22. System into deep-sleep-state;
23. If task is coming(external), then
24. System comes back to sleep-mode;
25. If the task is valid event, then
26. System comes back to active mode;
27. }
28. End While}
29. Update the energy consumption of all active node by Equation (3);

International Journal of Production Research 9
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Initialize the timer and
the node array element

Receives signals from self-
organizing networks via GPRS

CC1101 opens the address filter
and enters the active mode

The address of
the received
packet is 0

Sensing packets or command
confirmation packets

NY

Network broadcast package

All nodes are
added to the

network

Find the smallest inactive 
element in the Node array

The index is assigned to the 
element as a collection node ID

Broadcast the ID of the collection
node and the sink node

N

Y

Find the element whose subscript
is equal to the source address

Is the variable
active 0?

The variable active is set
to 1 (networking success)

Data is sorted by MTconnect

Set the element variable 
Max_Timeto Ticks + Life_Time

N

Y
The first handshaking

The second handshaking

The third handshaking

Figure 5. Implement of the low-power protocol of the sink node.

Table 2. A sample data for data cleansing algorithm.

Node �X ðt1Þ X(t2) Δ R SP �X ðt2Þ

0 35.56355 32.86434 −2.69921 0.94 35.909142 34.044352
1 36.26367 0.70012 0.95
2 35.58566 0.02211 0.98
3 36.86362 1.30007 0.89
0 32.56366 33.86368 1.30002 0.935 2.1767159 31.06079
1 31.54269 −1.02097 0.95
2 33.16363 0.59997 0.98
3 31.36356 −1.2001 0.89

10 C. Deng et al.
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difference between the current measured value and the previous period value. Based on the experimental results and sta-
tistical analysis, we set R = 1 (0 < R ≤ 1), α = 1 and Δ2 = 2.6, so the upper bound of the elastic space δ is 14 according
to Equation (5). Similarly, the lower bound of the elastic space γ is calculated as 2 when we set R = 0.5, α = 1 and
Δ2 = 1. When the current measured value X(t2) has a large fluctuation compared with the previous value �X (t1), neigh-
bouring nodes are used to eliminate the uncertainty of the measured values. Since the first neighbour space
SP = 35.909142 is larger than the upper bounds of the elastic space 14, the weighted average of the neighbourhood is
used to remove the noise by Equation (9). r(n, m, β) can be calculated by Equation (7), which is the weight of the mea-
sured value of the node n, here R(1) = 0.95, R(2) = 0.98, R(0.89). R(0) is average of other nodes R (1, 2, 3) and �X (t2) is
amended as 34.044352 by DCAES-IDCAES.

When the neighbourhood space SP = 2.1767159 is less than the lower bounds of the elastic space d ¼ 2, the mea-
sured value of node 0 and the other neighbour measurement of the weighted average are used to remove the noise by
Equation (10), and �X (t2) is amended as 31.06079.

5. Experiments and discussions

This section uses a vibration fault to test the proposed algorithm. The radial drilling machine is a common type of
machine tool, which can be used for drilling, reaming and modifying the scraping face. DCAES–IDCAES is used to
cleanse the vibration data that can effectively predict the product’s pass rate. Z3050X16 radial drilling machine is used
in this experiment. A/B two-arm radial drilling machine spindle boxes are selected as the test samples. Group A spindle
box was tested by special testing equipment, which meets the precision machining requirements. Group B spindle box
did not pass the testing, which was identified as an improper spindle assembly.

In the experiment, low-power embedded processor MSP430 and wireless RF Transceiver CC1101 are adopted for
HMS-CPMT. The sink node integrates a heterogeneous gateway which can communicate with each node. The data for-
mat follows MTConnect, which stores data in the MTConnect agent repository. Table 3 shows a sample request returns
in the form of a number of vibration information readings from Z3050X16.

5.1 Data cleansing experiment

This section compares the data cleansing algorithm for energy-saving (DCAES–IDCAES) with the demand-based adap-
tive fault detectors (DAFD) (Wang et al. 2014), which can cleanse redundant data while maintain the integrity of origi-
nal data.

In the experiment, the sampling frequency of the vibration acquisition node is among 1–8 Hz, and sampling period
is 0.1 s. The number of total acceleration samples of each spindle box is 200 times. Samples work in 2000 rpm/s under
group A and B for X-axis acceleration data sampling. We use the upper and lower bounds of the elastic space from Sec-
tion 4.4, and set the upper to 14 and the lower to 2, respectively, and the spatial correlation of 9 nodes closest to the
local node is {0.98, 0.86, 0.83, 0.76, 0.72, 0.68, 0.62, 0.44, 0.38}. Finally, two groups of spindle data are obtained, and
the raw sampling data and cleansing data are shown in Figure 6.

Table 3. A sample from Z3050X16 with MTConnect.

Machine Component Type Sequence Timestamp Value

M1 C1 Vibration acceleration 11 2017-04-26T02:02:36.483034 35.56367
12 2017-04-26T02:02:37.594045 34.14571
13 2017-04-26T02:02:37.693075 28.65562
14 2017-04-26T02:02:37.804056 28.07524
15 2017-04-26T02:02:37.915051 34.77705
16 2017-04-26T02:02:38.034055 33.96236
17 2017-04-26T02:02:38.151053 27.49765
18 2017-04-26T02:02:38.294055 32.25249
19 2017-04-26T02:02:38.402056 22.29572
20 2017-04-26T02:02:38.514058 34.59113
21 2017-04-26T02:02:38.637054 21.29226
22 2017-04-26T02:02:38.754035 26.30168
23 2017-04-26T02:02:38.898050 21.79475
24 2017-04-26T02:02:39.004045 35.56367

International Journal of Production Research 11
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It can be seen from Figure 6(a) that the axial vibration acceleration waveform in the normal state is a mild fluctuat-
ing curve. The average value of the 200 raw samples is 28.6 mg and the standard deviation is about 4.32 mg. While the
axial vibration acceleration waveform is a violent curve of volatility in the group B, the average value of 200 raw sam-
ples is 22.57 mg and the standard deviation of about 18.69 mg.

From the data map, it shows that DCAES–IDCAES can improve the data compressibility and accuracy more effec-
tively compared with DAFD. The vibration acceleration of group A is fluctuating and after applying DCAES–IDCAES
to eliminate the noise, the waveform is more stable than B group. By comparing the vibration acceleration data and
waveforms in two different groups, it can be seen that the axial acceleration of B group with improper spindle assembly
is bigger (the mean value) than the normal state during its motion. And the fluctuation is larger (variance big) as shown
in Figure 6(b). The reason is that DCAES–IDCAES cleanses data by exploiting two-phase data cleansing model. In the
first phase, sensor nodes preliminarily filter out potential errors in the raw data collected by themselves. In the second

Figure 6. The axial vibration acceleration waveform in the normal state and improper state.

12 C. Deng et al.
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phase, the master nodes eliminate the potential outliers of the data from the first phase by applying the elastic space on
the sensor nodes. The local CNC system or remote health diagnosis system can determine whether the failure occurred
by analysing the above vibration information. Thus, the lathe operator can replace the spindle box in a more reasonable
way.

5.2 Energy consumption of HMS-CPMT

On the basis of the above experiment, Energy Trace was adopted for getting the energy usage of MSP430 processors
(Ra et al. 2012). There were 10 acquisition nodes and 2 sink nodes in the HMS-CPMT. Each acquisition frequency was
tested by 60 s.

The energy consumption of 12 sensors is shown in Figure 7(a). With the increasing of acquisition frequency, energy
consumption of each algorithm is increased. DCAES–ESSAS algorithm performs better at the beginning of the acquisi-
tion (1–4 MHz), and DCAES–ESSAS algorithm yields better performance because the lower frequency, more slack time
it generates. Thus, more processors can be scaled, which consumes less energy. However, as the acquisition frequency
increases by 5–8 MHz, the difference among the algorithms gets smaller. This is because the higher frequency, the less
available slack time. Energy consumption of DCAES–ESSAS is always lower than DAFD, indicating that the proposed
algorithm is better in the energy consumption. The reason is that DCAES–ESSAS adopts DVS and DPM in the system
level to manage energy consumption. Experimental results show that DCAES can save the energy consumption on aver-
age by 19.48% over DAFD.

The energy consumption of DCAES-ESSAS algorithm is lower than that of DAFD and non-optimisation with the
increase of the number of sensors in Figure 7(b). There are several reasons. Firstly, DCAES–IDCAES algorithm can
cleanse data in the local nodes, which can reduce the energy consumption for communication. Therefore, when there
are 10 sensors in the system, the energy consumption of DCAES is significantly lower than that of DAFD and no-opti-
misation algorithm. This is because it is not necessary for all sensors to keep running mode. DCAES–ESSAS communi-
cates with 8.6 sensors on average. Secondly, DCAES–ESSAS algorithm can dynamically adjust the processor frequency
for reducing energy consumption meanwhile ensuring their deadlines. In addition, at the system level, the non-working
sensors can enter a different sleep mode depending on the workload, which can further reduce energy consumption.
Finally, the optimisation of the sink node network protocol can also reduce the energy consumption. Additionally,
DCAES–ESSAS adopts DVS and DPM in the system level to manage energy consumption, which is a good perfor-
mance compared with DAFD. Although DAFD can reduce redundant data to save energy and reduce time delay, DAFD
is too conservative without consideration of saving energy at the task and system level, or even the network level. The
results show that the average energy consumption of DCAES-ESSAS algorithm is 33.58% less than DAFD, and
58.16% less than that of the non-optimisation.

Figure 7. The average energy cost consumed by sensors in each round of monitoring.
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6. Conclusions

In this paper, a HMS–CPMT with WSNs was proposed by considering data cleansing, task scheduling and network pro-
tocol. The aim is to achieve low-power and reliable data acquisition. Two algorithms have been proposed for energy-
saving and data cleansing in a Cyber-physical machine tool. Contributions are summarised as follows.

(1) The developed HMS–CPMT offers high reliability and low power consumption. Sensors are embedded with
computational and networking capabilities, allowing real-time feedback loops so that machining processes can
affect computations and vice versa.

(2) The data cleansing algorithm for energy-saving (DCAES–IDCAES) can achieve data cleansing with the proxim-
ity of the neighbour correlation using lower energy consumption in local sensors.

(3) The energy-saving scheduling algorithm for sensor (DCAES–ESSAS) is used to schedule the period task from
sensors with lower power consumption. DVS and DPM are effective technologies for reducing system power
consumption without significant performance degradation at the system level.

(4) Finally, a low-power protocol for sink node communication is proposed. It can send the cleansed data to the
local CNC system and the cloud service for remote health diagnosis.

The proposed DCAES–IDCAES can be utilised in different types of WSN, allowing more accurate and reliable data
for further Big Data Analytics. Based on these reliable data, local and cloud-based machine health monitoring and anal-
ysis can be realised. Furthermore, various machine learning algorithms can be applied based on the proposed HMS-
CPMT, thus the machining performance can be improved, while the production cost can be reduced.

The system is data-hungry when diagnosis is performed. The relevant eigenvalue extraction and data mining algo-
rithms need to be further studied. Industrial Big Data Analytics and related mining algorithms are also necessary in
HMS–CPMT so as to make the system more intelligent. The future work includes the further development of the cloud
application based on this platform and the servitisation of CPMT.
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